--- bin/mallet.orig 2012-01-20 22:48:27.000000000 +0900 +++ bin/mallet 2012-01-21 13:35:34.000000000 +0900 @@ -1,10 +1,9 @@ #!/bin/bash -malletdir=`dirname $0` -malletdir=`dirname $malletdir` +malletdir=@malletdir@ -cp=$malletdir/class:$malletdir/lib/mallet-deps.jar:$CLASSPATH +cp=$malletdir/mallet.jar:$malletdir/mallet-deps.jar:$CLASSPATH #echo $cp MEMORY=1g @@ -26,12 +25,15 @@ classify-dir classify data from a single file with a saved classifier classify-file classify the contents of a directory with a saved classifier classify-svmlight classify data from a single file in SVMLight format + tag train, test, or run a generic CRF-based tagger train-topics train a topic model from Mallet data files infer-topics use a trained topic model to infer topics for new documents evaluate-topics estimate the probability of new documents under a trained model hlda train a topic model using Hierarchical LDA prune remove features based on frequency or information gain split divide data into testing, training, and validation portions + buld-load import large amounts of text into Mallet format + run run the main method of the specified class Include --help with any option for more information EOF @@ -47,6 +49,7 @@ classify-dir) CLASS=cc.mallet.classify.tui.Text2Classify;; classify-file) CLASS=cc.mallet.classify.tui.Csv2Classify;; classify-svmlight) CLASS=cc.mallet.classify.tui.SvmLight2Classify;; + tag) CLASS=cc.mallet.fst.SimpleTagger;; train-topics) CLASS=cc.mallet.topics.tui.Vectors2Topics;; infer-topics) CLASS=cc.mallet.topics.tui.InferTopics;; evaluate-topics) CLASS=cc.mallet.topics.tui.EvaluateTopics;;