Source
xxxxxxxxxx
//fill_coeffs(RVF4(1.2553, -0.4689, -0.1597, 0.0286), RVF4(0.0006, 0.0006, 0.0002, 0.0003));
//# FluxStdsQS.cc: Definition of the flux standards which do not explicitly
//# depend on time.
//# Copyright (C) 1996,1997,1999,2001,2002, 2010
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//# Internet email: aips2-request@nrao.edu.
//# Postal address: AIPS++ Project Office
//# National Radio Astronomy Observatory
//# 520 Edgemont Road
//# Charlottesville, VA 22903-2475 USA
//#
//#include <casa/Logging/LogIO.h>
using namespace casacore;
namespace casa { //# NAMESPACE CASA - BEGIN
// Each of these c'tors defines the polynomial coefficients for the
// log10(fluxDensity) = polynomial(log10(frequency)) calculations
// and optionally additional coefficients for estimating the flux density
// uncertainties.
//
// fill_coeffs() with two RigidVectors uses the first one for the flux density
// coefficients and second one for the uncertainty coefficients, starting at
// order 0. If the second RigidVector is omitted no uncertainty will be
// estimated.
Bool FluxStdBaars::setSourceCoeffs()
{
Bool found = true;
setFreqUnit("MHz");
FCQS::Source srcEnum = FluxCalcQS::getSrcEnum();
if(srcEnum == FCQS::THREEC286)
fill_coeffs(RVF3(1.480, 0.292, -0.124), RVF3(0.018, 0.006, 0.001));
else if(srcEnum == FCQS::THREEC48)
fill_coeffs(RVF3(2.345, 0.071, -0.138), RVF3(0.03, 0.001, 0.001));
else if(srcEnum == FCQS::THREEC147)
fill_coeffs(RVF3(1.766, 0.447, -0.184), RVF3(0.017, 0.006, 0.001));
else if(srcEnum == FCQS::THREEC138)
fill_coeffs(RVF3(2.009, -0.07176, -0.0862)); // No error specified
else if(srcEnum == FCQS::NINETEEN34M638)
fill_coeffs(RVF4(-23.839, 19.569, -4.8168, 0.35836)); // No error specified
else if(srcEnum == FCQS::THREEC295)
fill_coeffs(RVF3(1.485, 0.759, -0.255), RVF3(0.013, 0.009, 0.001));
else
found = false;
return found;
}
Bool FluxStdPerley90::setSourceCoeffs()
{
Bool found = true;
setFreqUnit("MHz");
FCQS::Source srcEnum = FluxCalcQS::getSrcEnum();
if(srcEnum == FCQS::THREEC286)
fill_coeffs(RVF3(1.35899, 0.3599, -0.13338));
else if(srcEnum == FCQS::THREEC48)
fill_coeffs(RVF3(2.0868, 0.20889, -0.15498));
else if(srcEnum == FCQS::THREEC147)
fill_coeffs(RVF3(1.92641, 0.36072, -0.17389));
else if(srcEnum == FCQS::THREEC138)
fill_coeffs(RVF3(2.009, -0.07176, -0.0862));
else if(srcEnum == FCQS::NINETEEN34M638)
fill_coeffs(RVF4(-30.7667, 26.4908, -7.0977, 0.605334));
else if(srcEnum == FCQS::THREEC295)
fill_coeffs(RVF3(1.485, 0.759, -0.255));
else
found = false;
return found;
}