//# FluxCalcLogFreqPolynomial.cc: Implementation of FluxCalcLogFreqPolynomial.h //# Copyright (C) 2010 //# Associated Universities, Inc. Washington DC, USA. //# //# This library is free software; you can redistribute it and/or modify it //# under the terms of the GNU Library General Public License as published by //# the Free Software Foundation; either version 2 of the License, or (at your //# option) any later version. //# //# This library is distributed in the hope that it will be useful, but WITHOUT //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public //# License for more details. //# //# You should have received a copy of the GNU Library General Public License //# along with this library; if not, write to the Free Software Foundation, //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. //# //# Correspondence concerning AIPS++ should be addressed as follows: //# Internet email: aips2-request@nrao.edu. //# Postal address: AIPS++ Project Office //# National Radio Astronomy Observatory //# 520 Edgemont Road //# Charlottesville, VA 22903-2475 USA //# #include <components/ComponentModels/FluxCalcLogFreqPolynomial.h> #include <casacore/casa/BasicSL/String.h> #include <casacore/measures/Measures/MFrequency.h> // Handy for passing anonymous arrays to functions. #include <casacore/scimath/Mathematics/RigidVector.h> #include <map> #include <casacore/casa/Logging/LogIO.h> using namespace casacore; namespace casa { //# NAMESPACE CASA - BEGIN Bool FluxCalcLogFreqPolynomial::operator()(Flux<Double>& value, Flux<Double>& error, const MFrequency& mfreq, const Bool updatecoeffs) { LogIO os(LogOrigin("FluxCalcLogFreqPolynomial", "()", WHERE)); Double dt = log10(mfreq.get(freqUnit_p).getValue()); if (updatecoeffs || coeffs_p(0).nelements()==0) { coeffs_p(0).resize(); coeffs_p(1).resize(); coeffs_p=getCurrentCoeffs(); } { validfrange_p=getValidFreqRange(); Double ghzinfreq = mfreq.get("GHz").getValue(); Double minfreq = validfrange_p(0).get("GHz").getValue(); Double maxfreq = validfrange_p(1).get("GHz").getValue(); if (!(minfreq==0.0 && maxfreq ==0.0)) { //cerr<<" range:"<<minfreq<<","<<maxfreq<<" infreq="<<ghzinfreq<<endl; if (minfreq > ghzinfreq || maxfreq < ghzinfreq) { //cerr<<"Input "<<String::toString(mfreq)<<" is out of the valid frequency range of the flux model: "<<String::toString(validfrange_p)<<endl; os<<LogIO::WARN<<"Input "<<String::toString(mfreq) <<" (Hz) is out of the valid frequency range of the flux model: " <<String::toString(validfrange_p)<<" (Hz)"<<LogIO::POST; } } } Double fluxCoeff = coeffs_p(0)[coeffs_p(0).nelements() - 1]; for(Int order = coeffs_p(0).nelements() - 2; order >= 0; --order) fluxCoeff = fluxCoeff * dt + coeffs_p(0)[order]; Double coeffErr = 0.0; Double dtpow = 1.0; for(uInt order = 0; order < coeffs_p(1).nelements(); ++order){ coeffErr += square(coeffs_p(1)[order] * dtpow); dtpow *= dt; } Double fluxDensity = pow(10.0, fluxCoeff); Double fluxError = coeffErr > 0.0 ? C::ln10 * fluxDensity * sqrt(coeffErr) : 0.0; //cerr<<"FluxDensity=="<<fluxDensity<<endl; value.setValue(fluxDensity); error.setValue(fluxError); // In this case the hard part of matching the std and src has already been done. return true; } Bool FluxCalcLogFreqPolynomial::setSource(const String& sourceName, const MDirection& sourceDir) { Bool success = FluxCalcVQS::setSource(sourceName, sourceDir); if(success) success = setSourceCoeffs(); return success; } void FluxCalcLogFreqPolynomial::setFreqUnit(const String& freqUnit) { freqUnit_p = freqUnit; } void FluxCalcLogFreqPolynomial::fill_coeffs(const Vector<Float>& lfv) { coeffs_p(0).resize(); coeffs_p(1).resize(); coeffs_p(0) = lfv; } FluxCalcLogFreqBrokenPolynomial::FluxCalcLogFreqBrokenPolynomial() : FluxCalcLogFreqPolynomial::FluxCalcLogFreqPolynomial(), break_freq_p(Quantity(0.0, "Hz")) { } Bool FluxCalcLogFreqBrokenPolynomial::operator()(Flux<Double>& value, Flux<Double>& error, const MFrequency& mfreq, const Bool updatecoeffs) { if (updatecoeffs) { //do nothing for now ; } Double break_freq_in_Hz = break_freq_p.get("Hz").getValue(); if(break_freq_in_Hz > 0.0){ if(mfreq.get("Hz").getValue() > break_freq_in_Hz){ if(in_low_state_p) fill_coeffs(high_coeffs_p); } else if(!in_low_state_p) fill_coeffs(low_coeffs_p); } // Proceed... return FluxCalcLogFreqPolynomial::operator()(value, error, mfreq); } Bool FluxCalcLogFreqPolynomialSH :: operator()( Flux<Double>& value, Flux<Double>& error, const MFrequency& mfreq, const Bool /* updatecoeffs */) { Double S = 0.; Double dS2 = 0.; coeffs_p(0).resize(); coeffs_p(1).resize(); coeffs_p=getCurrentCoeffs(); if ( coeffs_p( 0 ).nelements() > 0 ) { Double logF = log10( mfreq.get( freqUnit_p ).getValue() / 0.150 ); Double logS = 0.; for ( uInt order = coeffs_p( 0 ).nelements() - 1; order >= 1; --order) logS = ( logS + coeffs_p( 0 )[ order ] ) * logF; S = coeffs_p( 0 )[ 0 ] * pow( 10.0, logS ); if ( coeffs_p( 1 ).nelements() > 0 ) { for ( uInt order = coeffs_p( 1 ).nelements() - 1; order >= 1; --order) dS2 = ( dS2 + square( coeffs_p( 1 )[ order ] ) ) * square( logF ); dS2 = square( S * coeffs_p( 1 )[ 0 ] / coeffs_p( 0 )[ 0 ] ) + square( C::ln10 * S ) * dS2; } } Double dS = ( dS2 > 0.0 ) ? sqrt( dS2 ) : 0.0; value.setValue( S ); error.setValue( dS ); return true; } Bool FluxCalcLogFreqPolynomialSH::setSource(const String& sourceName, const MDirection& sourceDir) { Bool success = FluxCalcVQS::setSource(sourceName, sourceDir); if(success) success = setSourceCoeffs(); return success; } void FluxCalcLogFreqPolynomialSH::setFreqUnit(const String& freqUnit) { freqUnit_p = freqUnit; } } //# NAMESPACE CASA - END