Commits

Takeshi Nakazato authored 4b0211618d8
CAS-12940 add plotprofilemap task

casatasks/src/tasks/task_plotprofilemap.py

Added
1 +import os
2 +import numpy
3 +import pylab as pl
4 +
5 +from casatasks.private.casa_transition import is_CASA6
6 +if is_CASA6:
7 + from casatasks import casalog
8 + from casatools import quanta
9 + from casatools import image
10 +else:
11 + from taskinit import casalog
12 + from taskinit import qatool as quanta
13 + from taskinit import iatool as image
14 +
15 +
16 +qa = quanta()
17 +
18 +
19 +def plotprofilemap(imagename=None, figfile=None, overwrite=None, transparent=None,
20 + pol=None, spectralaxis=None, restfreq=None, plotrange=None, title=None,
21 + linecolor=None, linestyle=None, linewidth=None,
22 + separatepanel=None, plotmasked=None, maskedcolor=None,
23 + showaxislabel=None, showtick=None, showticklabel=None,
24 + figsize=None, numpanels=None):
25 + casalog.origin('plotprofilemap')
26 +
27 + try:
28 + if len(figfile) > 0 and os.path.exists(figfile) and overwrite == False:
29 + raise RuntimeError('overwrite is False and output file exists: \'%s\''%(figfile))
30 +
31 + image = SpectralImage(imagename)
32 + npol = len(image.stokes)
33 + if pol < 0 or pol > npol - 1:
34 + raise RuntimeError('pol {pol} is out of range (Stokes axis {stokes})'.format(pol=pol,stokes=image.stokes))
35 +
36 + parsed_size = parse_figsize(figsize)
37 + nx, ny = parse_numpanels(numpanels)
38 + if (not isinstance(restfreq, str)) or len(restfreq) == 0:
39 + restfreq = None
40 + plot_profile_map(image, figfile, pol, spectralaxis, restfreq, title, linecolor, linestyle, linewidth,
41 + separatepanel, plotmasked, maskedcolor,
42 + showaxislabel, showtick, showticklabel, parsed_size,
43 + nx, ny, transparent, plotrange)
44 + except Exception as e:
45 + casalog.post('Error: %s' % (str(e)), priority='SEVERE')
46 + import traceback
47 + casalog.post(traceback.format_exc(), priority='DEBUG')
48 + raise e
49 + finally:
50 + pass
51 +
52 +
53 +NoData = -32767.0
54 +NoDataThreshold = NoData + 10000.0
55 +LightSpeedQuantity = qa.constants('c')
56 +LightSpeed = qa.convert(LightSpeedQuantity, 'km/s')['value'] # speed of light in km/s
57 +DPIDetail = 130
58 +
59 +dsyb = '$^\circ$'
60 +hsyb = ':'
61 +msyb = ':'
62 +
63 +
64 +def Deg2HMS(x, arrowance):
65 + # Transform degree to HHMMSS.sss format
66 + xx = x % 360 + arrowance
67 + h = int(xx / 15)
68 + m = int((xx % 15) * 4)
69 + s = ((xx % 15) * 4 - m) * 60.0
70 + return (h, m, s)
71 +
72 +
73 +def HHMMSSss(x, pos):
74 + # HHMMSS.ss format
75 + (h, m, s) = Deg2HMS(x, 1 / 240000.0)
76 + #return '%02dh%02dm%05.2fs' % (h, m, s)
77 + return '%02d%s%02d%s%05.2f' % (h, hsyb, m, msyb, s)
78 +
79 +
80 +def Deg2DMS(x, arrowance):
81 + # Transform degree to +ddmmss.ss format
82 + xxx = (x + 90) % 180 - 90
83 + xx = abs(xxx) + arrowance
84 + if xxx < 0:
85 + sign = -1
86 + else:
87 + sign = 1
88 + d = int(xx * sign)
89 + m = int((xx % 1) * 60)
90 + s = ((xx % 1) * 60 - m) * 60.0
91 + return (d, m, s)
92 +
93 +
94 +def DDMMSSs(x, pos):
95 + # +DDMMSS.s format
96 + (d, m, s) = Deg2DMS(x, 1 / 360000.0)
97 + #return '%+02dd%02dm%04.1fs' % (d, m, s)
98 + sint = int(s)
99 + sstr = ('%3.1f'% ( s - int(s))).lstrip('0')
100 + return '%+02d%s%02d\'%02d\"%s' % (d, dsyb, m, sint, sstr)
101 +
102 +
103 +def parse_figsize(figsize):
104 + """
105 + return figsize in inches
106 + """
107 + casalog.post('parse_figsize input: {input}'.format(input=figsize), priority='DEBUG')
108 + parsed = None
109 + if figsize is not None and isinstance(figsize, str) and len(figsize) > 0:
110 + size_list = figsize.split(',')
111 + size_inch_list = [x / 25.4 for s in size_list for x in qa.getvalue(qa.convert(qa.quantity(s),outunit='mm'))]
112 + if len(size_inch_list) == 1:
113 + s = size_inch_list[0]
114 + parsed = (s, s)
115 + else:
116 + parsed = tuple(size_inch_list[:2])
117 + casalog.post('parse_figsize output: {output}'.format(output=parsed), priority='DEBUG')
118 + return parsed
119 +
120 +
121 +def parse_numpanels(numpanels):
122 + parsed = (-1, -1)
123 + if isinstance(numpanels, str) and len(numpanels) > 0:
124 + n = map(int, numpanels.split(','))
125 + if len(n) == 1:
126 + parsed = (n[0], n[0])
127 + else:
128 + parsed = (n[0], n[1])
129 + casalog.post('parse_numpanels output: {output}'.format(output=parsed), priority='DEBUG')
130 + return parsed
131 +
132 +
133 +class ProfileMapAxesManager(object):
134 + label_map = {'Right Ascension': 'RA',
135 + 'Declination': 'Dec'}
136 +
137 + def __init__(self, nh, nv, brightnessunit, direction_label, direction_reference,
138 + spectral_label, spectral_unit, ticksize, title='',
139 + separatepanel=True,
140 + showaxislabel=False, showtick=False, showticklabel=False,
141 + figsize=None,
142 + clearpanel=True):
143 + self.nh = nh
144 + self.nv = nv
145 + self.ticksize = ticksize
146 + self.brightnessunit = brightnessunit
147 + self.numeric_formatter = pl.FormatStrFormatter('%.2f')
148 + self.direction_label = direction_label
149 + self.direction_reference = direction_reference
150 + self.separatepanel = separatepanel
151 + self.spectral_label = spectral_label
152 + self.spectral_unit = spectral_unit
153 + self.showaxislabel = showaxislabel
154 + self.showtick = showtick
155 + self.showticklabel = showticklabel
156 + self.title = title
157 + self.figsize = figsize
158 + casalog.post('figsize={figsize}'.format(figsize=self.figsize), priority='DEBUG')
159 +
160 + self.normalization_factor = 1
161 +
162 + self._axes_spmap = None
163 +
164 + # to resize matplotlib window to specified size
165 + pl.figure(self.MATPLOTLIB_FIGURE_ID)
166 + pl.close()
167 +
168 + if self.figsize is None:
169 + pl.figure(self.MATPLOTLIB_FIGURE_ID)
170 + else:
171 + pl.figure(self.MATPLOTLIB_FIGURE_ID, figsize=self.figsize)
172 + if clearpanel:
173 + pl.clf()
174 +
175 + @property
176 + def MATPLOTLIB_FIGURE_ID(self):
177 + return "ProfileMap"
178 +
179 + @property
180 + def axes_spmap(self):
181 + if self._axes_spmap is None:
182 + self._axes_spmap = list(self.__axes_spmap())
183 +
184 + return self._axes_spmap
185 +
186 + @property
187 + def nrow(self):
188 + return self.nv
189 +
190 + @property
191 + def ncolumn(self):
192 + return self.nh + 1
193 +
194 + @property
195 + def left_margin(self):
196 + return 0.01 + 0.2 / self.ncolumn
197 +
198 + @property
199 + def right_margin(self):
200 + return 0.01
201 +
202 + @property
203 + def bottom_margin(self):
204 + return 0.01 + 0.5 / self.nrow
205 +
206 + @property
207 + def top_margin(self):
208 + return 0.01
209 +
210 + @property
211 + def horizontal_space(self):
212 + if self.separatepanel:
213 + return self.horizontal_subplot_size * 0.1
214 + else:
215 + return 0.
216 +
217 + @property
218 + def vertical_space(self):
219 + if self.separatepanel:
220 + return self.vertical_subplot_size * 0.1
221 + else:
222 + return 0.
223 +
224 + @property
225 + def xlabel_area(self):
226 + if self.showaxislabel or (self.showtick and self.showticklabel):
227 + return 0.02
228 + else:
229 + return 0.
230 +
231 + @property
232 + def ylabel_area(self):
233 + if self.showaxislabel or (self.showtick and self.showticklabel):
234 + return 0.03
235 + else:
236 + return 0.
237 +
238 + @property
239 + def title_area(self):
240 + if isinstance(self.title, str) and len(self.title) > 0:
241 + return 0.04 * (self.title.count('\n') + 1)
242 + else:
243 + return 0.
244 +
245 + @property
246 + def horizontal_subplot_size(self):
247 + return (1.0 - self.left_margin - self.right_margin - self.ylabel_area) / self.ncolumn
248 +
249 + @property
250 + def vertical_subplot_size(self):
251 + return (1.0 - self.bottom_margin - self.top_margin - self.xlabel_area - self.title_area) / self.nrow
252 +
253 + def set_normalization_factor(self, factor):
254 + self.normalization_factor = factor
255 +
256 + def __axes_spmap(self):
257 + for x in range(self.nh):
258 + for y in range(self.nv):
259 + w = self.horizontal_subplot_size
260 + h = self.vertical_subplot_size
261 + l = 1.0 - self.right_margin - w * (x + 1) + 0.5 * self.horizontal_space
262 + b = self.bottom_margin + self.ylabel_area + h * y + 0.5 * self.vertical_space
263 + axes = pl.axes([l, b, w - self.horizontal_space, h - self.vertical_space])
264 + axes.cla()
265 + if self.showaxislabel and y == 0 and x == self.nh - 1:
266 + casalog.post('label "{label}" unit "{unit}"'.format(label=self.spectral_label, unit=self.spectral_unit), priority='DEBUG')
267 + if self.spectral_unit is not None and len(self.spectral_unit) > 0:
268 + spectral_label = '%s [%s]' % (self.spectral_label, self.spectral_unit)
269 + else:
270 + spectral_label = self.spectral_label
271 + axes.xaxis.set_label_text(spectral_label,
272 + size=self.ticksize)
273 + if self.normalization_factor < 100 and self.normalization_factor > 0.01:
274 + label_text = 'Intensity [%s]' % self.brightnessunit
275 + else:
276 + label_text = 'Intensity [1e%d x %s]' % (int(numpy.log10(self.normalization_factor)),
277 + self.brightnessunit)
278 + axes.yaxis.set_label_text(label_text,
279 + size=self.ticksize, rotation='vertical')
280 + if self.showtick:
281 + axes.xaxis.tick_bottom()
282 + axes.yaxis.tick_left()
283 + if self.showticklabel:
284 + xlocator = pl.AutoLocator()
285 + xlocator.set_params(nbins=6, prune='upper')
286 + axes.xaxis.set_major_locator(xlocator)
287 + ylocator = pl.AutoLocator()
288 + ylocator.set_params(nbins=4)
289 + axes.yaxis.set_major_locator(ylocator)
290 + xformatter = pl.ScalarFormatter(useOffset=False)
291 + axes.xaxis.set_major_formatter(xformatter)
292 + axes.xaxis.set_tick_params(labelsize=max(self.ticksize - 1, 1))
293 + axes.yaxis.set_tick_params(labelsize=max(self.ticksize - 1, 1))
294 + if y != 0 or x != self.nh - 1:
295 + axes.xaxis.set_major_formatter(pl.NullFormatter())
296 + axes.yaxis.set_major_formatter(pl.NullFormatter())
297 + else:
298 + axes.xaxis.set_major_formatter(pl.NullFormatter())
299 + axes.yaxis.set_major_formatter(pl.NullFormatter())
300 +
301 + else:
302 + axes.yaxis.set_major_locator(pl.NullLocator())
303 + axes.xaxis.set_major_locator(pl.NullLocator())
304 +
305 + yield axes
306 +
307 + def setup_labels(self, label_ra, label_dec):
308 + for x in range(self.nh):
309 + w = self.horizontal_subplot_size
310 + l = 1.0 - self.right_margin - w * (x + 1)
311 + h = self.bottom_margin * 0.5
312 + b = self.bottom_margin - h
313 + a1 = pl.axes([l, b, w, h])
314 + a1.set_axis_off()
315 + if len(a1.texts) == 0:
316 + pl.text(0.5, 0.2, HHMMSSss((label_ra[x][0] + label_ra[x][1]) / 2.0, 0),
317 + horizontalalignment='center', verticalalignment='center', size=self.ticksize)
318 + else:
319 + a1.texts[0].set_text(HHMMSSss((label_ra[x][0] + label_ra[x][1]) / 2.0, 0))
320 + for y in range(self.nv):
321 + l = self.left_margin
322 + w = self.horizontal_subplot_size
323 + h = self.vertical_subplot_size
324 + b = self.bottom_margin + y * h
325 + a1 = pl.axes([l, b, w, h])
326 + a1.set_axis_off()
327 + if len(a1.texts) == 0:
328 + pl.text(0.5, 0.5, DDMMSSs((label_dec[y][0] + label_dec[y][1]) / 2.0, 0),
329 + horizontalalignment='center', verticalalignment='center', size=self.ticksize)
330 + else:
331 + a1.texts[0].set_text(DDMMSSs((label_dec[y][0] + label_dec[y][1]) / 2.0, 0))
332 +
333 + # longitude label
334 + l = self.left_margin + self.xlabel_area
335 + h = self.bottom_margin * 0.5
336 + b = 0.
337 + w = 1.0 - l - self.right_margin
338 + a1 = pl.axes([l, b, w, h])
339 + a1.set_axis_off()
340 + xpos = (1.0 + 0.5 * self.nh) / self.ncolumn
341 + casalog.post('xpos=%s' % (xpos), priority='DEBUG')
342 + pl.text(xpos, 0.5, '%s (%s)' % (self.direction_label[0], self.direction_reference),
343 + horizontalalignment='center', verticalalignment='center',
344 + size=(self.ticksize + 2))
345 +
346 + # latitude label
347 + l = 0.0
348 + w = self.left_margin
349 + h = self.vertical_subplot_size
350 + b = self.bottom_margin + 0.5 * (h * self.nrow - self.vertical_subplot_size)
351 + a1 = pl.axes([l, b, w, h])
352 + a1.set_axis_off()
353 + pl.text(1.0, 0.5, '%s (%s)' % (self.direction_label[1], self.direction_reference),
354 + horizontalalignment='right', verticalalignment='center',
355 + rotation='vertical', size=(self.ticksize + 2))
356 +
357 + # title
358 + if self.title_area > 0.:
359 + left = self.left_margin + self.xlabel_area
360 + bottom = 1.0 - self.title_area - self.top_margin
361 + width = 1.0 - left - self.right_margin
362 + height = self.title_area
363 + a1 = pl.axes([left, bottom, width, height])
364 + a1.set_axis_off()
365 + xpos = (1.0 + 0.5 * self.nh) / self.ncolumn
366 + pl.text(xpos, 0.1, self.title,
367 + horizontalalignment='center', verticalalignment='bottom',
368 + size=self.ticksize + 4)
369 +
370 +
371 +def plot_profile_map(image, figfile, pol, spectralaxis='', restfreq=None, title=None,
372 + linecolor='b', linestyle='-', linewidth=0.2,
373 + separatepanel=True, plotmasked=None, maskedcolor=None,
374 + showaxislabel=False, showtick=False, showticklabel=False,
375 + figsize=None, nx=-1, ny=-1, transparent=False, user_xlim=None):
376 + """
377 + image
378 + figfile
379 + linecolor
380 + linestyle
381 + linewidth
382 + separatepanel
383 + plotmasked -- 'none': show neither lines nor panels
384 + 'empty': show empty panel
385 + 'text': show 'NO DATA' symbol
386 + 'zero': plot zero level
387 + 'plot': plot masked data with different color
388 + """
389 + if linecolor is None:
390 + linecolor = 'b'
391 + if linestyle is None:
392 + linestyle = '-'
393 + if linewidth is None:
394 + linewidth = 0.2
395 + if separatepanel is None:
396 + separatepanel = True
397 + if plotmasked is None:
398 + plotmasked = 'none'
399 + if maskedcolor is None:
400 + maskedcolor = 'gray' if linecolor != 'gray' else 'black'
401 + if showaxislabel is None:
402 + showaxislabel = False
403 + if showtick is None:
404 + showtick = False
405 + if showticklabel is None:
406 + showticklabel = False
407 + if transparent is None:
408 + transparent = False
409 +
410 + # user-specified range for horizontal (spectral) axis
411 + user_xmin = None
412 + user_xmax = None
413 + if isinstance(user_xlim, str) and user_xlim.find('~') != -1:
414 + user_range = user_xlim.split('~')
415 + if len(user_range[0]) > 0:
416 + user_xmin = float(user_range[0])
417 + if len(user_range[1]) > 0:
418 + user_xmax = float(user_range[1])
419 +
420 + x_max = image.nx - 1
421 + x_min = 0
422 + y_max = image.ny - 1
423 + y_min = 0
424 + MaxPanel = 8
425 + num_panel = min(max(x_max - x_min + 1, y_max - y_min + 1), MaxPanel)
426 + STEP = int((max(x_max - x_min + 1, y_max - y_min + 1) - 1) / num_panel) + 1
427 + NH = (x_max - x_min) / STEP + 1
428 + NV = (y_max - y_min) / STEP + 1
429 + xSTEP = STEP
430 + ySTEP = STEP
431 +
432 + if nx > 0:
433 + NH = nx
434 + xSTEP = image.nx / NH + (1 if image.nx % NH > 0 else 0)
435 + if ny > 0:
436 + NV = ny
437 + ySTEP = image.ny / NV + (1 if image.ny % NV > 0 else 0)
438 +
439 + casalog.post('num_panel=%s, xSTEP=%s, ySTEP=%s, NH=%s, NV=%s' % (num_panel, xSTEP, ySTEP, NH, NV))
440 +
441 + chan0 = 0
442 + chan1 = image.nchan
443 +
444 + direction_label = image.direction_label
445 + direction_reference = image.direction_reference
446 + default_spectral_label = image.spectral_label
447 + default_spectral_unit = image.spectral_unit
448 + if default_spectral_label == 'Frequency':
449 + default_spectral_unit = 'GHz'
450 + default_spectral_data = image.spectral_data[chan0:chan1]
451 + if spectralaxis is None or spectralaxis == '' or spectralaxis == default_spectral_label.lower():
452 + spectral_label = default_spectral_label
453 + spectral_unit = default_spectral_unit
454 + spectral_data = default_spectral_data
455 + elif spectralaxis == 'channel':
456 + spectral_label = 'Channel'
457 + spectral_unit = ''
458 + spectral_data = numpy.arange(chan0, chan1, dtype=numpy.int32)
459 + else:
460 + spectral_label = spectralaxis.capitalize()
461 + if spectralaxis == 'frequency':
462 + spectral_unit = 'GHz'
463 + spectral_data = numpy.fromiter((image.to_frequency(v, freq_unit='GHz')
464 + for v in default_spectral_data), dtype=numpy.float64)
465 + elif spectralaxis == 'velocity':
466 + if restfreq is not None:
467 + casalog.post('User-specified rest frequency %s' % (restfreq))
468 + else:
469 + casalog.post('Default rest frequency from input image %s' % (image.coordsys.restfrequency()))
470 + spectral_unit = 'km/s'
471 + spectral_data = numpy.fromiter((image.to_velocity(f, freq_unit='GHz', restfreq=restfreq)
472 + for f in default_spectral_data), dtype=numpy.float64)
473 +
474 + plotter = SDProfileMapPlotter(NH, NV, xSTEP, ySTEP, image.brightnessunit,
475 + direction_label, direction_reference,
476 + spectral_label, spectral_unit,
477 + title=title,
478 + separatepanel=separatepanel,
479 + showaxislabel=showaxislabel,
480 + showtick=showtick,
481 + showticklabel=showticklabel,
482 + figsize=figsize,
483 + clearpanel=True)
484 +
485 + masked_data = image.data * image.mask
486 + masked_data[numpy.logical_not(numpy.isfinite(masked_data))] = 0.0
487 +
488 + plot_list = []
489 +
490 + refpix = [0, 0]
491 + refval = [0, 0]
492 + increment = [0, 0]
493 + refpix[0], refval[0], increment[0] = image.direction_axis(0, unit='deg')
494 + refpix[1], refval[1], increment[1] = image.direction_axis(1, unit='deg')
495 + plotter.setup_labels(refpix, refval, increment)
496 +
497 + stokes = image.stokes[pol]
498 + casalog.post('Generate profile map for pol {stokes}'.format(stokes=stokes))
499 + casalog.post('masked_data.shape=%s id_stokes=%s' % (list(masked_data.shape), image.id_stokes), priority='DEBUG')
500 + masked_data_p = masked_data.take([pol], axis=image.id_stokes).squeeze(axis=image.id_stokes)
501 + Plot = numpy.zeros((NH, NV, (chan1 - chan0)), numpy.float32) + NoData
502 + mask_p = image.mask.take([pol], axis=image.id_stokes).squeeze(axis=image.id_stokes)
503 + isvalid = numpy.any(mask_p, axis=2)
504 + Nsp = sum(isvalid.flatten())
505 + casalog.post('Nsp=%s' % (Nsp))
506 +
507 + for x in range(NH):
508 + x0 = x * xSTEP
509 + x1 = (x + 1) * xSTEP
510 + for y in range(NV):
511 + y0 = y * ySTEP
512 + y1 = (y + 1) * ySTEP
513 + valid_index = isvalid[x0:x1, y0:y1].nonzero()
514 + chunk = masked_data_p[x0:x1, y0:y1]
515 + valid_sp = chunk[valid_index[0], valid_index[1], :]
516 + if len(valid_sp) == 0:
517 + Plot[x][y] = NoData
518 + else:
519 + Plot[x][y] = valid_sp.mean(axis=0)
520 +
521 + # normalize plot data
522 + plot_mask = numpy.logical_and(numpy.isfinite(Plot), Plot != NoData)
523 + max_data = numpy.abs(Plot[plot_mask]).max()
524 + casalog.post('max_data = %s' % (max_data), priority='DEBUG')
525 + normalization_factor = numpy.power(10.0, int(numpy.log10(max_data)))
526 + if normalization_factor < 1.0:
527 + normalization_factor /= 10.
528 + casalog.post('normalization_factor = %s' % (normalization_factor), priority='DEBUG')
529 + plotter.set_normalization_factor(normalization_factor)
530 +
531 + Plot[plot_mask] /= normalization_factor
532 +
533 + status = plotter.plot(figfile, Plot,
534 + spectral_data,
535 + linecolor=linecolor,
536 + linestyle=linestyle,
537 + linewidth=linewidth,
538 + plotmasked=plotmasked,
539 + maskedcolor=maskedcolor,
540 + transparent=transparent,
541 + user_xmin=user_xmin,
542 + user_xmax=user_xmax)
543 +
544 + plotter.done()
545 +
546 +
547 +class SDProfileMapPlotter(object):
548 + def __init__(self, nh, nv, xstep, ystep, brightnessunit, direction_label, direction_reference,
549 + spectral_label, spectral_unit, title=None, separatepanel=True,
550 + showaxislabel=False, showtick=False, showticklabel=False,
551 + figsize=None,
552 + clearpanel=True):
553 + self.xstep = xstep
554 + self.ystep = ystep
555 + if self.xstep > 1 or self.ystep > 1:
556 + step = max(self.xstep, self.ystep)
557 + ticksize = 10 - int(max(nh, nv) * step / (step - 1)) / 2
558 + else:
559 + ticksize = 10 - int(max(nh, nv)) / 2
560 + self.axes = ProfileMapAxesManager(nh, nv, brightnessunit,
561 + direction_label, direction_reference,
562 + spectral_label, spectral_unit,
563 + ticksize, title=title,
564 + separatepanel=separatepanel,
565 + showaxislabel=showaxislabel,
566 + showtick=showtick,
567 + showticklabel=showticklabel,
568 + figsize=figsize,
569 + clearpanel=clearpanel)
570 + self.lines_averaged = None
571 + self.lines_map = None
572 + self.reference_level = None
573 + self.global_scaling = True
574 + self.deviation_mask = None
575 +
576 + @property
577 + def nh(self):
578 + return self.axes.nh
579 +
580 + @property
581 + def nv(self):
582 + return self.axes.nv
583 +
584 + @property
585 + def TickSize(self):
586 + return self.axes.ticksize
587 +
588 + def setup_labels(self, refpix_list, refval_list, increment_list):
589 + LabelRA = numpy.zeros((self.nh, 2), numpy.float32) + NoData
590 + LabelDEC = numpy.zeros((self.nv, 2), numpy.float32) + NoData
591 + refpix = refpix_list[0]
592 + refval = refval_list[0]
593 + increment = increment_list[0]
594 + #casalog.post('axis 0: refpix,refval,increment=%s,%s,%s'%(refpix,refval,increment))
595 + for x in range(self.nh):
596 + x0 = (self.nh - x - 1) * self.xstep
597 + x1 = (self.nh - x - 2) * self.xstep + 1
598 + LabelRA[x][0] = refval + (x0 - refpix) * increment
599 + LabelRA[x][1] = refval + (x1 - refpix) * increment
600 + refpix = refpix_list[1]
601 + refval = refval_list[1]
602 + increment = increment_list[1]
603 + #casalog.post('axis 1: refpix,refval,increment=%s,%s,%s'%(refpix,refval,increment))
604 + for y in range(self.nv):
605 + y0 = y * self.ystep
606 + y1 = (y + 1) * self.ystep - 1
607 + LabelDEC[y][0] = refval + (y0 - refpix) * increment
608 + LabelDEC[y][1] = refval + (y1 - refpix) * increment
609 + self.axes.setup_labels(LabelRA, LabelDEC)
610 +
611 + def setup_reference_level(self, level=0.0):
612 + self.reference_level = level
613 +
614 + def set_global_scaling(self):
615 + self.global_scaling = True
616 +
617 + def unset_global_scaling(self):
618 + self.global_scaling = False
619 +
620 + def set_normalization_factor(self, factor):
621 + self.axes.set_normalization_factor(factor)
622 +
623 + def plot(self, figfile, map_data, frequency,
624 + linecolor='b', linestyle='-', linewidth=0.2,
625 + plotmasked='none', maskedcolor='gray', transparent=False,
626 + user_xmin=None, user_xmax=None):
627 + if len(frequency) == 1:
628 + casalog.post('Number of spectral channels is 1. Resulting profile map will be useless.',
629 + priority='WARN')
630 + global_xmin = frequency[0] - 1.
631 + global_xmax = frequency[0] + 1.
632 + else:
633 + global_xmin = min(frequency[0], frequency[-1])
634 + global_xmax = max(frequency[0], frequency[-1])
635 + casalog.post('full spectral range: global_xmin=%s, global_xmax=%s' % (global_xmin, global_xmax))
636 +
637 + if user_xmin is not None:
638 + casalog.post('user-specified global_xmin %s' % (user_xmin))
639 + global_xmin = user_xmin
640 + if user_xmax is not None:
641 + casalog.post('user-specified global_xmax %s' % (user_xmax))
642 + global_xmax = user_xmax
643 +
644 + if global_xmin == global_xmax:
645 + raise RuntimeError('Wrong spectral axis range: no range to plot.')
646 + elif global_xmin > global_xmax:
647 + raise RuntimeError('Wrong spectral axis range: minimum > maximum')
648 +
649 + # Auto scaling
650 + # to eliminate max/min value due to bad pixel or bad fitting,
651 + # 1/10-th value from max and min are used instead
652 + valid_index = numpy.where(map_data.min(axis=2) > NoDataThreshold)
653 + valid_data = map_data[valid_index[0], valid_index[1], :]
654 + ListMax = valid_data.max(axis=1)
655 + ListMin = valid_data.min(axis=1)
656 + casalog.post('ListMax=%s' % (list(ListMax)))
657 + casalog.post('ListMin=%s' % (list(ListMin)))
658 + if len(ListMax) == 0:
659 + return False
660 + global_ymax = numpy.sort(ListMax)[len(ListMax) - len(ListMax) / 10 - 1]
661 + global_ymin = numpy.sort(ListMin)[len(ListMin) / 10]
662 + global_ymax = global_ymax + (global_ymax - global_ymin) * 0.2
663 + global_ymin = global_ymin - (global_ymax - global_ymin) * 0.1
664 + del ListMax, ListMin
665 +
666 + casalog.post('global_ymin=%s, global_ymax=%s' % (global_ymin, global_ymax))
667 +
668 + pl.ioff()
669 +
670 + no_data = numpy.zeros(len(frequency), dtype=numpy.float32)
671 + for x in range(self.nh):
672 + for y in range(self.nv):
673 + if self.global_scaling is True:
674 + xmin = global_xmin
675 + xmax = global_xmax
676 + ymin = global_ymin
677 + ymax = global_ymax
678 + else:
679 + xmin = global_xmin
680 + xmax = global_xmax
681 + if map_data[x][y].min() > NoDataThreshold:
682 + median = numpy.median(map_data[x][y])
683 + mad = numpy.median(map_data[x][y] - median)
684 + sigma = map_data[x][y].std()
685 + ymin = median - 2.0 * sigma
686 + ymax = median + 5.0 * sigma
687 + else:
688 + ymin = global_ymin
689 + ymax = global_ymax
690 + casalog.post('Per panel scaling turned on: ymin=%s, ymax=%s (global ymin=%s, ymax=%s)' % (ymin, ymax, global_ymin, global_ymax))
691 + pl.gcf().sca(self.axes.axes_spmap[y + (self.nh - x - 1) * self.nv])
692 + if map_data[x][y].min() > NoDataThreshold:
693 + pl.plot(frequency, map_data[x][y], color=linecolor, linestyle=linestyle,
694 + linewidth=linewidth)
695 + else:
696 + if plotmasked == 'empty':
697 + pass
698 + elif plotmasked == 'text':
699 + pl.text((xmin + xmax) / 2.0, (ymin + ymax) / 2.0, 'NO DATA', ha='center', va='center',
700 + size=(self.TickSize + 1))
701 + elif plotmasked == 'zero':
702 + pl.plot(frequency, no_data,
703 + color=maskedcolor, linestyle=linestyle, linewidth=linewidth)
704 + elif plotmasked == 'none':
705 + a = pl.gcf().gca()
706 + if self.axes.xlabel_area > 0. and y == 0 and x == 0:
707 + pass
708 + else:
709 + a.set_axis_off()
710 + elif plotmasked == 'plot':
711 + m = map_data[x][y] == NoDataThreshold
712 + if not all(m):
713 + ma = pl.ma.masked_array(map_data[x][y], m)
714 + pl.plot(frequency, ma,
715 + color=maskedcolor, linestyle=linestyle, linewidth=linewidth)
716 +
717 + pl.axis((xmin, xmax, ymin, ymax))
718 +
719 + pl.ion()
720 + pl.draw()
721 +
722 + casalog.post('figfile=\'%s\'' % (figfile), priority='DEBUG')
723 + if figfile is not None and len(figfile) > 0:
724 + casalog.post('Output profile map to %s' % (figfile))
725 + pl.savefig(figfile, format='png', dpi=DPIDetail, transparent=transparent)
726 +
727 + return True
728 +
729 + def done(self):
730 + #pl.close()
731 + del self.axes
732 +
733 +
734 +class SpectralImage(object):
735 + def __init__(self, imagename):
736 + self.imagename = imagename
737 + # read data to storage
738 + ia = image()
739 + ia.open(self.imagename)
740 + try:
741 + self.image_shape = ia.shape()
742 + self.coordsys = ia.coordsys()
743 + coord_types = self.coordsys.axiscoordinatetypes()
744 + self.units = self.coordsys.units()
745 + self.names = self.coordsys.names()
746 + self.direction_reference = self.coordsys.referencecode('dir')[0]
747 + self.spectral_reference = self.coordsys.referencecode('spectral')[0]
748 + self.id_direction = coord_types.index('Direction')
749 + self.id_direction = [self.id_direction, self.id_direction + 1]
750 + self.id_spectral = coord_types.index('Spectral')
751 + try:
752 + self.id_stokes = coord_types.index('Stokes')
753 + stokes_axis_exists = True
754 + except Exception:
755 + # if no Stokes axis exists, set dummy axis at the end
756 + self.id_stokes = len(coord_types)
757 + stokes_axis_exists = False
758 + casalog.post('id_direction=%s' % (self.id_direction), priority='DEBUG')
759 + casalog.post('id_spectral=%s' % (self.id_spectral), priority='DEBUG')
760 + casalog.post('id_stokes=%s (%s stokes axis)' % (self.id_stokes, ('real' if stokes_axis_exists else 'dummy')),
761 + priority='DEBUG')
762 + self.data = ia.getchunk()
763 + self.mask = ia.getchunk(getmask=True)
764 + if not stokes_axis_exists:
765 + # put degenerate Stokes axis at the end
766 + self.data = numpy.expand_dims(self.data, axis=-1)
767 + self.mask = numpy.expand_dims(self.mask, axis=-1)
768 + casalog.post('add dummy Stokes axis to data and mask since input image doesn\'t have it.')
769 + casalog.post('data.shape={}'.format(self.data.shape), priority='DEBUG')
770 + casalog.post('mask.shape={}'.format(self.mask.shape), priority='DEBUG')
771 + bottom = ia.toworld(numpy.zeros(len(self.image_shape), dtype=int), 'q')['quantity']
772 + top = ia.toworld(self.image_shape - 1, 'q')['quantity']
773 + key = lambda x: '*%s' % (x + 1)
774 + ra_min = bottom[key(self.id_direction[0])]
775 + ra_max = top[key(self.id_direction[0])]
776 + if ra_min > ra_max:
777 + ra_min, ra_max = ra_max, ra_min
778 + self.ra_min = ra_min
779 + self.ra_max = ra_max
780 + self.dec_min = bottom[key(self.id_direction[1])]
781 + self.dec_max = top[key(self.id_direction[1])]
782 + self._brightnessunit = ia.brightnessunit()
783 + if self.spectral_label == 'Frequency':
784 + refpix, refval, increment = self.spectral_axis(unit='GHz')
785 + self.spectral_data = numpy.array([refval + increment * (i - refpix) for i in range(self.nchan)])
786 + elif self.spectral_label == 'Velocity':
787 + refpix, refval, increment = self.spectral_axis(unit='km/s')
788 + self.spectral_data = numpy.array([refval + increment * (i - refpix) for i in range(self.nchan)])
789 + if stokes_axis_exists:
790 + self.stokes = self.coordsys.stokes()
791 + else:
792 + # if no Stokes axis exists, set ['I']
793 + self.stokes = ['I']
794 + finally:
795 + ia.close()
796 +
797 + @property
798 + def nx(self):
799 + return self.image_shape[self.id_direction[0]]
800 +
801 + @property
802 + def ny(self):
803 + return self.image_shape[self.id_direction[1]]
804 +
805 + @property
806 + def nchan(self):
807 + return self.image_shape[self.id_spectral]
808 +
809 + @property
810 + def npol(self):
811 + return self.image_shape[self.id_stokes]
812 +
813 + @property
814 + def brightnessunit(self):
815 + return self._brightnessunit
816 +
817 + @property
818 + def direction_label(self):
819 + return [self.names[i] for i in self.id_direction]
820 +
821 + @property
822 + def spectral_label(self):
823 + return self.names[self.id_spectral]
824 +
825 + @property
826 + def spectral_unit(self):
827 + return self.units[self.id_spectral]
828 +
829 + def to_velocity(self, frequency, freq_unit='GHz', restfreq=None):
830 + rest_frequency = self.coordsys.restfrequency()
831 + # user-defined rest frequency takes priority
832 + if restfreq is not None:
833 + vrf = qa.convert(qa.quantity(restfreq), freq_unit)['value']
834 + elif rest_frequency['unit'] != freq_unit:
835 + vrf = qa.convert(rest_frequency, freq_unit)['value']
836 + else:
837 + vrf = rest_frequency['value']
838 + return (1.0 - (frequency / vrf)) * LightSpeed
839 +
840 + def to_frequency(self, velocity, freq_unit='km/s'):
841 + rest_frequency = self.coordsys.restfrequency()
842 + if rest_frequency['unit'] != freq_unit:
843 + vrf = qa.convert(rest_frequency, freq_unit)['value']
844 + else:
845 + vrf = rest_frequency['value']
846 + return (1.0 - velocity / LightSpeed) * vrf
847 +
848 + def spectral_axis(self, unit='GHz'):
849 + return self.__axis(self.id_spectral, unit=unit)
850 +
851 + def direction_axis(self, idx, unit='deg'):
852 + return self.__axis(self.id_direction[idx], unit=unit)
853 +
854 + def __axis(self, idx, unit):
855 + refpix = self.coordsys.referencepixel()['numeric'][idx]
856 + refval = self.coordsys.referencevalue()['numeric'][idx]
857 + increment = self.coordsys.increment()['numeric'][idx]
858 + _unit = self.units[idx]
859 + if _unit != unit:
860 + refval = qa.convert(qa.quantity(refval, _unit), unit)['value']
861 + increment = qa.convert(qa.quantity(increment, _unit), unit)['value']
862 + #return numpy.array([refval+increment*(i-refpix) for i in xrange(self.nchan)])
863 + return (refpix, refval, increment)

Everything looks good. We'll let you know here if there's anything you should know about.

Add shortcut