Commits

Takeshi Nakazato authored c173c50a158
CAS-13780 call super without arguments

it is possible because we get rid of python 2.7 support.
No tags

casatasks/src/private/task_sdatmcor.py

Modified
490 490 return geodetic_elevation
491 491
492 492
493 493 class ATMScalarParameterConfigurator(ATMParameterConfigurator):
494 494 def __init__(self, key, user_input, impl_default, default_unit,
495 495 api_default='', is_mandatory=True, is_effective=True):
496 496 value, is_customized = parse_atm_params(
497 497 user_param=user_input, user_default=api_default,
498 498 task_default=impl_default, default_unit=default_unit)
499 499 do_config = is_mandatory or (is_effective and is_customized)
500 - # TODO: remove arguments for super, i.e. just super().__init__(...)
501 - # once we completely get rid of CASA5
502 - super(self.__class__, self).__init__(key=key, value=value, do_config=do_config)
500 + super().__init__(key=key, value=value, do_config=do_config)
503 501
504 502
505 503 class ATMListParameterConfigurator(ATMParameterConfigurator):
506 504 def __init__(self, key, user_input, impl_default, default_unit,
507 505 api_default='', is_mandatory=True, is_effective=True):
508 506 value, is_customized = parse_atm_list_params(
509 507 user_param=user_input, user_default=api_default,
510 508 task_default=impl_default, default_unit=default_unit)
511 509 do_config = is_mandatory or (is_effective and is_customized)
512 - # TODO: remove arguments for super, i.e. just super().__init__(...)
513 - # once we completely get rid of CASA5
514 - super(self.__class__, self).__init__(key=key, value=value, do_config=do_config)
510 + super().__init__(key=key, value=value, do_config=do_config)
515 511
516 512
517 513 def get_configuration_for_atmcor(infile, spw, outputspw, gainfactor, user_inputs):
518 514 # requested list of output spws and processing spws
519 515 # processing spws are the intersection of these
520 516 outputspws_param = parse_spw(infile, outputspw)
521 517 spws_param = parse_spw(infile, spw)
522 518 all_processing_spws = np.asarray(list(set(spws_param).intersection(set(outputspws_param))))
523 519
524 520 # generate gain factor dictionary

Everything looks good. We'll let you know here if there's anything you should know about.

Add shortcut